vollib.black package¶
Subpackages¶
Submodules¶
vollib.black.implied_volatility module¶
vollib.black.implied_volatility¶
A library for option pricing, implied volatility, and greek calculation. vollib is based on lets_be_rational, a Python wrapper for LetsBeRational by Peter Jaeckel as described below.
copyright: | © 2015 Iota Technologies Pte Ltd |
---|---|
license: | MIT, see LICENSE for more details. |
About LetsBeRational:¶
The source code of LetsBeRational resides at www.jaeckel.org/LetsBeRational.7z .
======================================================================================
Copyright © 2013-2014 Peter Jäckel.
Permission to use, copy, modify, and distribute this software is freely granted,
provided that this notice is preserved.
WARRANTY DISCLAIMER
The Software is provided "as is" without warranty of any kind, either express or implied,
including without limitation any implied warranties of condition, uninterrupted use,
merchantability, fitness for a particular purpose, or non-infringement.
======================================================================================
-
vollib.black.implied_volatility.
implied_volatility_of_discounted_option_price
(discounted_option_price, F, K, r, t, flag)[source]¶ Calculate the implied volatility of the Black option price
Parameters: - discounted_option_price (float) – discounted Black price of a futures option
- F (float) – underlying futures price
- K (float) – strike price
- r (float) – the risk-free interest rate
- t (float) – time to expiration in years
- flag (str) – ‘p’ or ‘c’ for put or call
>>> F = 100 >>> K = 100 >>> sigma = .2 >>> flag = 'c' >>> t = .5 >>> r = .02
>>> discounted_call_price = black(flag, F, K, t, r, sigma) >>> iv = implied_volatility_of_discounted_option_price( ... discounted_call_price, F, K, r, t, flag)
>>> print discounted_call_price, iv 5.5811067246 0.2
-
vollib.black.implied_volatility.
implied_volatility_of_undiscounted_option_price
(undiscounted_option_price, F, K, t, flag)[source]¶ Calculate the implied volatility of the undiscounted Black option price
Parameters: - undiscounted_option_price (float) – undiscounted Black price of a futures option
- F (float) – underlying futures price
- K (float) – strike price
- t (float) – time to expiration in years
>>> F = 100 >>> K = 100 >>> sigma = .2 >>> flag = 'c' >>> t = .5
>>> undiscounted_call_price = undiscounted_black(F, K, sigma, t, flag) >>> iv = implied_volatility_of_undiscounted_option_price( ... undiscounted_call_price, F, K, t, flag)
>>> print undiscounted_call_price, iv 5.6371977797 0.2
-
vollib.black.implied_volatility.
implied_volatility_of_undiscounted_option_price_limited_iterations
(undiscounted_option_price, F, K, t, flag, N)[source]¶ Calculate implied volatility of the undiscounted Black option price with limited iterations.
Parameters: - undiscounted_option_price (float) – undiscounted Black price of a futures option
- F (float) – underlying futures price
- K (float) – strike price
- t (float) – time to expiration in years
>>> F = 100 >>> K = 100 >>> sigma = .232323232 >>> flag = 'c' >>> t = .5
>>> price = undiscounted_black(F, K, sigma, t, flag) >>> iv = implied_volatility_of_undiscounted_option_price_limited_iterations( ... price, F, K, t, flag, 1)
>>> print price, iv 6.54635543387 0.232323232
-
vollib.black.implied_volatility.
normalised_implied_volatility
(beta, x, flag)[source]¶ Calculate the normalised Black implied volatility, a time invariant transformation of Black implied volatility.
Keyword arguments:
Parameters: - x (float) – ln(F/K) where K is the strike price, and F is the futures price
- beta (float) – the normalized Black price
- flag (str) – ‘p’ or ‘c’ for put or call
>>> beta_call = normalised_black(0.0, 0.2, 'c') >>> beta_put = normalised_black(0.1,0.23232323888,'p') >>> normalized_b76_iv_call = normalised_implied_volatility(beta_call, 0.0, 'c') >>> normalized_b76_iv_put = normalised_implied_volatility(beta_put, 0.1, 'p') >>> print beta_call, normalized_b76_iv_call 0.0796556745541 0.2 >>> print beta_put, normalized_b76_iv_put 0.0509710222785 0.23232323888
-
vollib.black.implied_volatility.
normalised_implied_volatility_limited_iterations
(beta, x, flag, N)[source]¶ Calculate the normalised Black implied volatility, with limited iterations.
Parameters: - x (float) – ln(F/K) where K is the strike price, and F is the futures price
- beta (float) – the normalized Black price
- flag (str) – ‘p’ or ‘c’ for put or call
>>> beta_call = normalised_black(0.0, 0.2, 'c') >>> beta_put = normalised_black(0.1,0.23232323888,'p') >>> normalized_b76_iv_call = normalised_implied_volatility_limited_iterations(beta_call, 0.0, 'c',1) >>> normalized_b76_iv_put = normalised_implied_volatility_limited_iterations(beta_put, 0.1, 'p',1) >>> print beta_call, normalized_b76_iv_call 0.0796556745541 0.2 >>> print beta_put, normalized_b76_iv_put 0.0509710222785 0.23232323888
Module contents¶
vollib.black¶
Copyright © 2015
A library for option pricing, implied volatility, and greek calculation. vollib is based on lets_be_rational, a Python wrapper for LetsBeRational by Peter Jaeckel as described below.
copyright: | © 2015 Iota Technologies Pte Ltd |
---|---|
license: | MIT, see LICENSE for more details. |
About LetsBeRational:¶
The source code of LetsBeRational resides at www.jaeckel.org/LetsBeRational.7z .
======================================================================================
Copyright © 2013-2014 Peter Jäckel.
Permission to use, copy, modify, and distribute this software is freely granted,
provided that this notice is preserved.
WARRANTY DISCLAIMER
The Software is provided "as is" without warranty of any kind, either express or implied,
including without limitation any implied warranties of condition, uninterrupted use,
merchantability, fitness for a particular purpose, or non-infringement.
======================================================================================
-
vollib.black.
black
(flag, F, K, t, r, sigma)[source]¶ Calculate the (discounted) Black option price.
Parameters: - F (float) – underlying futures price
- K (float) – strike price
- sigma (float) – annualized standard deviation, or volatility
- t (float) – time to expiration in years
>>> F = 100 >>> K = 100 >>> sigma = .2 >>> flag = 'c' >>> r = .02 >>> t = .5 >>> black(flag, F, K, t, r, sigma) 5.5811067246048118
-
vollib.black.
black_call
(F, K, t, r, sigma)[source]¶ Calculate the price of a call using Black. (Python implementation for reference.)
Parameters: - F (float) – underlying futures price
- K (float) – strike price
- sigma (float) – annualized standard deviation, or volatility
- t (float) – time to expiration in years
- r (float) – risk-free interest rate
Hull, page 343, example 16.7
>>> F = 620 >>> K = 600 >>> r = .05 >>> sigma = .2 >>> t = 0.5 >>> calculated_value = black_call(F, K, t, r, sigma) >>> #44.1868533121 >>> text_book_value = 44.19 >>> abs(calculated_value - text_book_value) < .01 True
-
vollib.black.
black_put
(F, K, t, r, sigma)[source]¶ Calculate the price of a put using Black. (Python implementation for reference.)
Parameters: - F (float) – underlying futures price
- K (float) – strike price
- sigma (float) – annualized standard deviation, or volatility
- t (float) – time to expiration in years
- r (float) – risk-free interest rate
Hull, page 338, example 16.6
>>> F = 20 >>> K = 20 >>> r = .09 >>> sigma = .25 >>> t = 4/12.0 >>> calculated_value = black_put(F, K, t, r, sigma) >>> # 1.11664145656 >>> text_book_value = 1.12 >>> abs(calculated_value - text_book_value) < .01 True
-
vollib.black.
d1
(F, K, t, r, sigma)[source]¶ Calculate the d1 component of the Black PDE.
Parameters: - F (float) – underlying futures price
- K (float) – strike price
- sigma (float) – annualized standard deviation, or volatility
- t (float) – time to expiration in years
- r (float) – risk-free interest rate
Doctest using Hull, page 343, example 16.6
>>> F = 20 >>> K = 20 >>> r = .09 >>> t = 4/12.0 >>> sigma = 0.25
>>> calculated_value = d1(F, K, t, r, sigma) >>> #0.0721687836487 >>> text_book_value = 0.07216 >>> abs(calculated_value - text_book_value) < .00001 True
-
vollib.black.
d2
(F, K, t, r, sigma)[source]¶ Calculate the d2 component of the Black PDE.
Parameters: - F (float) – underlying futures price
- K (float) – strike price
- sigma (float) – annualized standard deviation, or volatility
- t (float) – time to expiration in years
- r (float) – risk-free interest rate
Hull, page 343, example 16.6
>>> F = 20 >>> K = 20 >>> r = .09 >>> t = 4/12.0 >>> sigma = 0.25
>>> calculated_value = d2(F, K, t, r, sigma) >>> #-0.0721687836487 >>> text_book_value = -0.07216 >>> abs(calculated_value - text_book_value) < .00001 True
-
vollib.black.
normalised_black
(x, s, flag)[source]¶ Calculate the normalised Black value, a time invariant transformation of the Black pricing formula.
Parameters: - x (float) – ln(F/K) where K is the strike price, and F is the futures price
- s (float) – volatility times the square root of time to expiration
- flag (str) – ‘p’ or ‘c’ for put or call
>>> F = 100. >>> K = 95. >>> x = log(F/K) >>> t = 0.5 >>> v = 0.3 >>> s = v * sqrt(t)
>>> normalised_black(x,s,'p') 0.061296663817558904
>>> normalised_black(x,s,'c') 0.11259558142181655
-
vollib.black.
test_python_vs_c_values
()[source]¶ >>> F = 100 >>> K = 90 >>> sigma = .2 >>> flag = 'c' >>> r = .02 >>> t = .5
>>> epsilon = .000000001
>>> v1 = black('c', F, K, t, r, sigma) >>> v2 = black_call(F, K, t, r, sigma)
>>> print abs(v1-v2) < epsilon True
>>> v1 = black('p', F, K, t, r, sigma) >>> v2 = black_put(F, K, t, r, sigma) >>> print abs(v1-v2) < epsilon True
-
vollib.black.
undiscounted_black
(F, K, sigma, t, flag)[source]¶ Calculate the undiscounted Black option price.
Parameters: - F (float) – underlying futures price
- K (float) – strike price
- sigma (float) – annualized standard deviation, or volatility
- t (float) – time to expiration in years
>>> F = 100 >>> K = 100 >>> sigma = .2 >>> flag = 'c' >>> t = .5 >>> undiscounted_black(F, K, sigma, t, flag) 5.637197779701664