py_vollib.black_scholes_merton.greeks.analytical

A library for option pricing, implied volatility, and greek calculation. py_vollib is based on lets_be_rational, a Python wrapper for LetsBeRational by Peter Jaeckel as described below.

copyright:

© 2023 Larry Richards

license:

MIT, see LICENSE for more details.

About LetsBeRational:

The source code of LetsBeRational resides at www.jaeckel.org/LetsBeRational.7z .

========================================================================================
Copyright © 2013-2014 Peter Jäckel.

Permission to use, copy, modify, and distribute this software is freely granted,
provided that this notice is preserved.

WARRANTY DISCLAIMER
The Software is provided "as is" without warranty of any kind, either express or implied,
including without limitation any implied warranties of condition, uninterrupted use,
merchantability, fitness for a particular purpose, or non-infringement.
========================================================================================

Module Contents

Functions

delta(flag, S, K, t, r, sigma, q)

Returns the Black-Scholes-Merton delta of an option.

theta(flag, S, K, t, r, sigma, q)

Returns the Black-Scholes-Merton theta of an option.

gamma(flag, S, K, t, r, sigma, q)

Returns the Black-Scholes-Merton gamma of an option.

vega(flag, S, K, t, r, sigma, q)

Returns the Black-Scholes-Merton vega of an option.

rho(flag, S, K, t, r, sigma, q)

Returns the Black-Scholes-Merton rho of an option.

delta(flag, S, K, t, r, sigma, q)[source]

Returns the Black-Scholes-Merton delta of an option.

Parameters:
  • flag (str) – ‘c’ or ‘p’ for call or put.

  • S (float) – underlying asset price

  • K (float) – strike price

  • t (float) – time to expiration in years

  • r (float) – annual risk-free interest rate

  • sigma (float) – volatility

  • q (float) – annualized continuous dividend yield

Returns:

float

Example 17.1, page 355, Hull:

>>> S = 49
>>> K = 50
>>> r = .05
>>> t = 0.3846
>>> q = 0
>>> sigma = 0.2
>>> flag = 'c'
>>> delta_calc = delta(flag, S, K, t, r, sigma, q)
>>> # 0.521601633972
>>> delta_text_book = 0.522
>>> abs(delta_calc - delta_text_book) < .01
True
theta(flag, S, K, t, r, sigma, q)[source]

Returns the Black-Scholes-Merton theta of an option.

Parameters:
  • flag (str) – ‘c’ or ‘p’ for call or put.

  • S (float) – underlying asset price

  • K (float) – strike price

  • t (float) – time to expiration in years

  • r (float) – annual risk-free interest rate

  • sigma (float) – volatility

  • q (float) – annualized continuous dividend yield

Returns:

float

The text book analytical formula does not divide by 365, but in practice theta is defined as the change in price for each day change in t, hence we divide by 365.

Example 17.2, page 359, Hull:

>>> S = 49
>>> K = 50
>>> r = .05
>>> t = 0.3846
>>> q = 0
>>> sigma = 0.2
>>> flag = 'c'
>>> annual_theta_calc = theta(flag, S, K, t, r, sigma, q) * 365
>>> # -4.30538996455
>>> annual_theta_text_book = -4.31
>>> abs(annual_theta_calc - annual_theta_text_book) < .01
True

Using the same inputs with a put. >>> S = 49 >>> K = 50 >>> r = .05 >>> t = 0.3846 >>> sigma = 0.2 >>> flag = ‘p’ >>> annual_theta_calc = theta(flag, S, K, t, r, sigma, q) * 365 >>> # -1.8530056722 >>> annual_theta_reference = -1.8530056722 >>> abs(annual_theta_calc - annual_theta_reference) < .000001 True

gamma(flag, S, K, t, r, sigma, q)[source]

Returns the Black-Scholes-Merton gamma of an option.

Parameters:
  • flag (str) – ‘c’ or ‘p’ for call or put.

  • S (float) – underlying asset price

  • K (float) – strike price

  • t (float) – time to expiration in years

  • r (float) – annual risk-free interest rate

  • sigma (float) – volatility

  • q (float) – annualized continuous dividend yield

Returns:

float

Example 17.4, page 364, Hull:

>>> S = 49
>>> K = 50
>>> r = .05
>>> t = 0.3846
>>> q = 0
>>> sigma = 0.2
>>> flag = 'c'
>>> gamma_calc = gamma(flag, S, K, t, r, sigma, q)
>>> # 0.0655453772525
>>> gamma_text_book = 0.066
>>> abs(gamma_calc - gamma_text_book) < .001
True
vega(flag, S, K, t, r, sigma, q)[source]

Returns the Black-Scholes-Merton vega of an option.

Parameters:
  • flag (str) – ‘c’ or ‘p’ for call or put.

  • S (float) – underlying asset price

  • K (float) – strike price

  • t (float) – time to expiration in years

  • r (float) – annual risk-free interest rate

  • sigma (float) – volatility

  • q (float) – annualized continuous dividend yield

Returns:

float

The text book analytical formula does not multiply by .01, but in practice vega is defined as the change in price for each 1 percent change in IV, hence we multiply by 0.01.

Example 17.6, page 367, Hull:

>>> S = 49
>>> K = 50
>>> r = .05
>>> t = 0.3846
>>> q = 0
>>> sigma = 0.2
>>> flag = 'c'
>>> vega_calc = vega(flag, S, K, t, r, sigma, q)
>>> # 0.121052427542
>>> vega_text_book = 0.121
>>> abs(vega_calc - vega_text_book) < .01
True
rho(flag, S, K, t, r, sigma, q)[source]

Returns the Black-Scholes-Merton rho of an option.

Parameters:
  • flag (str) – ‘c’ or ‘p’ for call or put.

  • S (float) – underlying asset price

  • K (float) – strike price

  • t (float) – time to expiration in years

  • r (float) – annual risk-free interest rate

  • sigma (float) – volatility

  • q (float) – annualized continuous dividend yield

Returns:

float

The text book analytical formula does not multiply by .01, but in practice rho is defined as the change in price for each 1 percent change in r, hence we multiply by 0.01.

Example 17.7, page 368, Hull:

>>> S = 49
>>> K = 50
>>> r = .05
>>> t = 0.3846
>>> q = 0
>>> sigma = 0.2
>>> flag = 'c'
>>> rho_calc = rho(flag, S, K, t, r, sigma, q)
>>> # 0.089065740988
>>> rho_text_book = 0.0891
>>> abs(rho_calc - rho_text_book) < .0001
True